
Efficient Conformance Checking of Rich
Data-Aware Declare Specifications (Extended)

Abstract. Despite growing interest in process analysis and mining
for data-aware specifications, alignment-based conformance checking for
declarative process specifications has focused on pure control-flow spec-
ifications, or mild data-aware extensions limited to numerical data and
variable-to-constant comparisons. This is not surprising: finding align-
ments is computationally hard, even more so in the presence of data
dependencies. In this paper, we challenge this problem in the case where
the reference model is captured using data-aware Declare with general
data types and data conditions. We show that, unexpectedly, it is pos-
sible to compute data-aware optimal alignments in this rich setting, en-
joying at once efficiency and expressiveness. This is achieved by carefully
combining the two best-known approaches to deal with control flow and
data dependencies when computing alignments, namely A* search and
SMT solving. Specifically, we introduce a novel algorithmic technique
that efficiently explores the search space, generating descendant states
through the application of repair actions aiming at incrementally re-
solving constraint violations. We prove the correctness of our algorithm
and experimentally show its efficiency. The evaluation witnesses that our
approach matches or surpasses the performance of the state of the art
while also supporting significantly more expressive data dependencies,
showcasing its potential to support real-world applications.

Keywords: Multi-perspective conformance checking · Efficient optimal
alignments · Data-aware Declare · Satisfiability modulo theories (SMT).

1 Introduction

Conformance checking [7] is a cornerstone task in process mining. It relates the
observed behaviour contained in an event log to the expected behaviour de-
scribed by a reference process model, with the goal of identifying and reporting
deviations. A widely adopted approach substantiates conformance checking in
the computation of so-called optimal alignments, where each non-conforming log
trace is compared against the closest model trace(s), indicating where discrep-
ancies are located and calculating a corresponding cost [5].

Lifting the computation of alignments to process models integrating multi-
perspectives (most prominently data and control-flow), has been tackled with in-
creasing interest [18,3,13], and so has been dealing with other forms of data-aware
conformance checking. On the one hand, this reflects a growing prominence of
multi-perspective (in particular, data-aware) process models in the foundations
of process science. On the other hand, computing multi-perspective alignments
provides more informative insights than in a pure control-flow setting [18].

2

Despite this growing interest, alignment-based conformance checking for
declarative data-aware process specifications is still an open problem. Existing
work mainly tackles constraint-based specifications on the process control-flow,
concretely expressed using DCR graphs [9], Declare [17], or more expressive for-
mulae in Linear Temporal Logic on finite traces (LTLf) [10]. Also trace analysis
frameworks for multi-perpective Declare have been developed [4,6] that report
activations and fulfillments of constraints, but without computing alignments
(in [4] data conditions are also restricted in that they cannot refer to individual
events). Work on process mining via SQL queries [20,19] covers conformance
checking to some extent, in that Declare constraints expressed as SQL queries
can filter traces from a database that match these constraints. However, no align-
ments are constructed, and only exactly matching traces are considered. To the
best of our knowledge, the only attempt in lifting alignment computation to a
data-aware setting is [3], which considers however a very limited data-aware ex-
tension of Declare where data are numerical and data conditions are restricted
to variable-to-constant comparisons (such as x > 5).

The need for considering richer multi-perspective dependencies in con-
straints,1 is well-known (see, e.g., [6,18,13]), and exemplified next.

Example 1. To highlight the expressivity of complex data conditions, consider a
model for a shipping company that has a Declare response constraint between
two events: “Package Shipment” (A) and “Delivery Confirmation” (B), such that
after a package is shipped, delivery confirmation must be received. The constraint
is equipped with a data condition that specifies that the delivery confirmation
must be received within 3 days of shipping if the package weighs less than 10 kg
and the delivery address is within a specific geographic region. In any other case,
it must be received within 10 days of shipping. Our approach can handle this con-
dition in SMT-LIB2 [2] syntax or simply as (A.weight < 10.0 and B.region
== "Europe") ? (B.time - A.time <= 3d) : (B.time - A.time <= 10d).

The fact that previous work did not consider rich constraints like the one
shown in the example is not surprising: finding alignments is computationally
hard, even more so in the presence of data dependencies. Also, this more expres-
sive setting cannot be attacked relying on previous methods [10,3], based on the
construction of an automaton capturing all and only the traces accepted by the
reference Declare specification. In fact, this is not possible even for numerical
datatypes going beyond mere comparison predicates, due to undecidability [14].

In this paper, we tackle this challenging problem by introducing a founda-
tional algorithmic approach, paired with an effective implementation, to compute
alignments for rich data-aware Declare specifications. Constraints are extended
with expressive data conditions (both local to time instants and correlating time
instances) over various datatypes, ranging from primitive datatypes such as
strings and numbers to full-fledged data structures [15]—essentially, all types
supported by state-of-the-art satisfiability modulo theory (SMT) solvers [11,12].
1 As it will become clear in the paper, we treat timestamps as a specific datatype,

hence data constraints also cover quantitative time constraints, such as deadlines.

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 3

This is achieved by casting the alignment problem as a search problem whose
steps aim at identifying and repairing constraint violations, thereby intervening
on model, trace, edit, and synchronous moves. This requires at once to reason on
time and data conditions, and to efficiently explore the space of possible repairs.
To tackle this problem we strategically integrate the two most effective methods
for respectively handling control flow and data dependencies in alignment com-
putation: A∗ search, in the variant adopted by one of the most recent methods
for Declare [8], and SMT solving [2], so far employed for aligning data-aware pro-
cedural process models [13]. Our technique defines a novel search space that is
explored using the A∗ search algorithm to find an optimal alignment. The initial
state of the search space represents the original trace as an SMT formula. When
a state is explored, an SMT solver is used to identify constraint violations and
to generate the child states by repairing the parent state. This process continues
until a goal state is found that has minimal cost and no violation to repair, from
which the overall alignment can be reconstructed.

We establish the correctness of our algorithm through rigorous proofs and
provide an extensive experimental evaluation, showing its ability to efficiently
operate even when rich data conditions are employed. Our method matches or
surpasses the performance of the state of the art, while providing for the first time
concrete support for rich datatypes and data conditions that no other approach
can handle.

The remainder of this paper is structured as follows: In Sec. 2 we recall
the necessary preliminaries about data-aware Declare, and alignments. Sec. 3
is dedicated to our approach to conformance checking for data-aware Declare
specifications. We describe its implementation in the tool DADA in Sec. 4. In
Sec. 5, we provide a detailed evaluation and comparison with the state-of-the-
art. In Sec. 6, we conclude and give some directions for future work. Additional
material, including an extended version of this paper, is available online [1].

2 Preliminaries

In this section we introduce the required background about event logs, Declare
with data, and alignments. We start with events and the data condition language.

Event logs. We consider an arbitrary infinite set Id of event identifiers. We
consider the following notions of data-aware events, traces, and event logs:

Definition 1. An event e is a triple e = (ι, a, α) such that ι ∈ Id , a ∈ A is an
activity, and α is a partial assignment that maps variables in V to elements of
their domain. Given a set of events E, a trace e is a finite sequence of events
in E, that is, e ∈ E∗; and an event log is a multiset of traces.

Data conditions. We consider sorts Σ = {bool, int, rat, string} for data pay-
loads, with associated domains D(bool) = B, the booleans; D(int) = Z, the
integers; D(rat) = Q, the rational numbers, and D(string) = S, finite strings.
For a set of variables V and a sort σ ∈ Σ, Vσ denotes the subset of V of sort σ.

4

(1) Existence(n,A): A occurs at least n times.
(2) Absence(n,A): A occurs at most n − 1 times.
(3) Init(A): A is the first activity.
(4) End(A): A is the last activity.
(5) Choice(A,B): Either A or B, or both, occur.
(6) RespondedExistence(A,B): If A occurs, B also occurs.
(7) Response(A,B): If A occurs, B follows.
(8) AlternateResponse(A,B): If A occurs, B follows without an A in between.
(9) ChainResponse(A,B): If A occurs, B is the next activity.
(10)Precedence(A,B): If B occurs, A precedes it.
(11)AlternatePrecedence(A,B): If B occurs, A precedes it without a B in between.
(12)ChainPrecedence(A,B): If B occurs, A is the previous activity.
(13)NotResponse(A,B): If A occurs, B does follow.
(14)NotRespondedExistence(A,B): If A occurs, B does not.
(15)NotChainResponse(A,B): If A occurs, B is not the next activity.

Table 1. Supported Declare templates.

Definition 2. A data condition over a set of variables V is an expression ac-
cording to the following grammar:
c = Vbool | B | n ≥ n | r ≥ r | r > r | s = s | b ∧ b | ¬b s = Vstring | S
n = Vint | Z | n+ n | −n r = Vrat | Q | r + r | −r
The set of data conditions over a set of variables V is denoted by C(V).

We use data conditions as in Def. 2 in this paper to have a concrete lan-
guage to refer to, but our implementation actually allows for the full SMT-LIB2
language [2] that is supported by the SMT solver of choice.

Declare. In the sequel, we assume that A is a fixed set of activities, denoted by
lower-case letters. Tab. 1 lists the Declare templates used in this paper. We call
a Declare constraint an expression that is obtained from a Declare template by
substituting the upper-case template variables by activities in A. Constraints
based on templates (6)–(9) and (10)–(12) are called response and precedence
constraints, respectively. Constraints using (13)–(15) are negation constraints.

Declare templates, as well as the derived constraints, have activations and
targets. Intuitively, an activation is an event whose occurrence imposes the (non)
occurrence of other events. These other events are called targets. For the tem-
plates in Tab. 1, in all response and negation templates variable A is the activa-
tion and B the target; while in all precedence templates, B is the activation and
A the target. The remaining patterns use both A and B as targets. Given a De-
clare constraint φ, an activity is an activation (resp. target) activity in φ if it is
substituted for an activation (resp. target) variable in the underlying template.

We consider multi-perspective Declare constraints that include data condi-
tions. To that end, for the remainder of the paper we fix a set of sorted process
variables V . Intuitively, these variables are considered the payload of activities.
They are maintained along the entire trace, but may change their values. For a
set Set, let V Set = {vs | v ∈ V and s ∈ Set} be a set of labelled variables that
contains a copy of each variable in V for each element in Set. In particular, for
a ∈ A, the idea is that va represents the value of v while observing activity a.

Definition 3. A Declare constraint with data is a quadruple ⟨φ, cA, cT , cR⟩ con-
sisting of a Declare constraint φ and data conditions cA, cT and cR. Precisely,

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 5

for a the activation and t the target activity in φ: (i) cA ∈ C(V {a}) is called
the activation condition, (ii) cT ∈ C(V {t}) is called the target condition, and
(iii) cR ∈ C(V {a,t}) is called the correlation condition.

Intuitively, cA constrains the data variables while the activation activity is
observed, cT the data variables while the target activity is observed, and cR
expresses relationships between the data variables of both activities. For Declare
constraints φ without activation, we assume that all but cT are ⊤. For simplicity
of presentation, we assume that the activation and target activity are different,
(though in our implementation this is not required). A Declare specification M
is a set of Declare constraints with data. In the sequel, if no confusion can arise,
we refer to Declare constraints with data simply by constraints.

Example 2. As running example, we use the set of variables V = {x}, activities
A = {a, b, c} and the specification M that consists of the following two con-
straints ψ1 and ψ2, where for readability we write a.v instead of va, for a ∈ A:
– ψ1 = ⟨ChainResponse(a, c),⊤,⊤, c.x > a.x⟩: This specifies that each occur-

rence of a must be directly followed by an event with c such that the value
of x associated with activity c is greater than the value of x seen with a.

– ψ2 = ⟨AlternatePrecedence(c, b), b.x ≥ 0, c.x ̸= 0, c.x < b.x⟩: This states an
alternate precedence relationship between the activation b and the target c,
demanding that if the value of x seen with b is non-negative, an activity c
must occur before activity b, without any other b activities with x ≥ 0 in
between. Furthermore, the x value of c must be lower than the x value of b.

The semantics of Declare constraints with data is the same as in [3], we recall
it in [1, Def. 11]. The set of all traces that satisfy all constraints in M is denoted
by runs(M). We assume for our approach that runs(M) ̸= ∅.

Alignments. We aim to design a conformance-checking procedure that, given a
trace and a Declare specification M, finds an optimal alignment of e and a run
of M. Typically, when constructing alignments, not all events in the trace can
be put in correspondence with an event in a run, and vice versa. Hence we use
a “skip” symbol ≫ and consider the extended set of events is E≫ = E ∪ {≫}.

For a set E of events as above, a pair (e, f) ∈ E≫2 \{(≫,≫)} is called move
iff it is one of: (i) log move if e ∈ E and f = ≫; (ii) model move if e = ≫ and
f ∈ E; (iii) edit move if (e, f) ∈ E2, (e, f) = ((ι, a, α), (ι, a, α′)), D(α) = D(α′)
and ∃v ∈ D(α) such that α(v) ̸= α′(v); (iv) synchronous move if (e, f) ∈ E2 and
e = f . We denote by Moves the set of all moves.

For a sequence of moves γ = ⟨(e1, f1), . . . , (en, fn)⟩, the log projection γ|L of
γ is the maximal subsequence e′1, . . . , e′i of e1, . . . , en such that e′1, . . . , e′i ∈ E∗,
that is, it contains no ≫ symbols. Similarly, the model projection γ|M of γ is
the maximal subsequence f ′1, . . . , f ′j of f1, . . . , fn such that f ′1, . . . , f ′j ∈ E∗.

Definition 4 (Alignment). Given a Declare model M, a sequence of moves γ
is an alignment of a trace e against M if γ|L = e, and γ|M ∈ runs(M). The
set of alignments for a trace e wrt. M is denoted by Align(M, e).

6

Example 3. Consider the trace e = ⟨(#1, a, {x = 0}), (#2, b, {x = 2})⟩. The fol-
lowing are two possible alignments for e against the model from Ex. 2:

γ1 =
a {x = 0}
a {x = 0}

≫
c {x = 1}

b {x = 2}
b {x = 2} γ2 =

a {x = 0}
a {x = 0}

≫
c {x = 3}

b {x = 2}
≫

Each move (e, f) is shown in a column, including e in the first row and f in the
second row. Since event identifiers are irrelevant in alignments, we omit them.

A cost function is a mapping κ : Moves → R+ that assigns a cost to every
move. It is naturally extended to alignments as follows.

Definition 5 (Alignment cost). Given γ ∈ Align(M, e) as before, the cost
of γ is defined as the sum of costs of its moves, that is, κ(γ) =

∑n
i=1 κ(ei, fi).

Moreover, γ is optimal for e and M if κ(γ) is minimal among all alignments
for e and M, namely there is no γ′ ∈ Align(M, e) with κ(γ′) < κ(γ).

In this paper, we will use the standard cost function κ that assigns κ(e, f) = 1
if (e, f) is a log or model move, κ(e, f) = 0 if (e, f) is a synchronous move, and
for an edit move (e, f) = ((ι, a, α), (ι, a, α′)), κ(e, f) = |{α(v) ̸= α′(v) | v ∈ V }|.

3 Data-Aware Declare Aligner

In this section, we outline the conceptual approach of the Data-Aware Declare
Aligner. Given a Declare specification M and a trace e, the aim is to find an
optimal alignment of e wrt. M. To that end, the basic idea is to start with
the event sequence in e, and subsequently repair it until an event sequence is
obtained that satisfies all constraints in M. To navigate through a large search
space of possible alignments while ensuring an optimal solution, our approach
leverages the A∗ algorithm. Each state represents a (partially) ordered set of
events together with data conditions, effectively acting as a candidate alignment
with a respective cost that may not yet satisfy all constraints.

An overview of the approach is sketched in Fig. 1: the initial state S0 rep-
resents the set of events in the input trace, ordered as in e, and with data
conditions that reflect the variable assignments. The previously unvisited state
S of minimal cost is selected. It is then checked whether there are remaining con-
straint violations in S. In this case, all possible repairs are applied to S creating
a new child state from each repair, and another search iteration is performed.
Otherwise, an optimal alignment for e is reconstructed from S.
States. As mentioned above, a state contains a partially ordered set of events,
and data conditions on their payloads. In order to express conditions that involve
variables in all events, we need, as a technicality, labelled variables: For an event
e = (ι, a, α), let V e = {vι | v ∈ V } be a copy of the set V where each variable
is labelled by the id of e. For a set of events E, let V E =

⋃
e∈E V

e be the set
of variables for all events in E. A state with set of events E can then use data
conditions (cf. Def. 2) on V E to refer to the events’ payloads. In the sequel we
also assume that V contains a special variable τ of type integer, and τ ι will

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 7

create initial
state S0 from e

choose the unvisited state
S with minimum cost

∃ψ ∈M that
is violated in S

add child states where
violation is repaired

create alignment
from goal state Sno

yes

Fig. 1. Overview of the approach.

denote the timestamp of event with id ι. To reason about (partial) orderings of
events in E, states use ordering conditions, defined next:

Definition 6. An ordering condition o for a set of events E is of the following
form, where e, e′ ∈E, a∈A is an activity, and c is a data condition as in Def. 2:

o := e < e′ | e≪ e′ | first(e) | last(e) | e <a
[c] e

′ | ¬o | ⊤

Here e < e′ expresses that e happens before e′, e≪ e′ that e happens before e′
without any other event in between, first(e) that e is the first, last(e) that e is the
last element, and ⊤ is a condition that is always true. Somewhat more complex,
e <a

[c] e
′ expresses that e happens before e′ without an event e′′ in between that

has activity a and satisfies c, where c is supposed to be a data condition over
V e′′ . A set of ordering conditions on E in satisfiable if there exists a topological
sort of E that satisfies all conditions. A set of ordering conditions O is said to
entail an ordering condition q, denoted O |= q, if

∧
O∧¬q is unsatisfiable. Note

that the ordering conditions are defined to closely align with the semantics of
the supported Declare templates, as clarified in Def. 8.

We are now ready to give the definition of a state:

Definition 7. A state is a pair S = ⟨E,C⟩ where E is a set of events, and C
is a set of ordering conditions on E and data conditions over V E.

A state ⟨E,C⟩ thus represents a set of events E that is partially ordered by
the ordering conditions in C, and where payloads of events are constrained by
the data conditions in C.

For a trace e = ⟨e1, . . . , en⟩, let E(e) = {e1, . . . , en} be its set of events,
O(e) = {ei < ei+1 | 1 ≤ i < n} be the set of ordering conditions that capture
the event ordering in e, and D(e) the conjunction of all equations vι = α(v)
such that an event e = (ι, a, α) occurs in e and v ∈ dom(α). The initial state
is ⟨E(e), O(e) ∪D(e)⟩, it serves as the starting point for the exploration of the
search space. Note that we use formulas that mix ordering and data conditions;
we will explain in the next section how standard SMT solvers can be used to
perform satisfiability checks of such formulas.

Example 4. Consider the trace e in Ex. 3 with events e1 = (#1, a, {x = 0}) and
e2 = (#2, b, {x = 2}). If no confusion can arise, we write a.x rather than xι1 etc.
for readability. The initial state is S0 = ⟨{e1, e2}, (e1<e2)∧(a.x=0)∧(b.x=2)⟩.
Here e1<e2 expresses that e1 happens before e2; the remaining conditions fix the
values of x in the two events. Fig. 2 shows most of the search space for e and the

8

a
x 7→ 0

#1 b
x 7→ 2

#2

(a.x=0) ∧ (b.x=2)

ψ1: activation #1 misses target

S0 cost: 0

a
x 7→ 0

#1
c #3

b
x 7→ 2

#2

(a.x=0) ∧ (b.x=2) ∧ (a.x< c.x)

ψ2: activation #2 misses target

S1 cost: 1

b
x 7→ 2

#2

(b.x=2)

ψ2: activation #2 misses target

S3 cost: 1

a
x 7→ 0

#1 c #3

(a.x=0) ∧ (a.x< c.x)

S6 cost: 2

a
x 7→ 0

#1 c #3 c #4 b
x 7→ 2

#2ψ2

(a.x=0) ∧ (b.x=2) ∧ (a.x< c#3.x) ∧ (c#4.x< b.x)

S8 cost: 2

c #1 b
x 7→ 2

#2ψ2

(b.x=2) ∧ (c.x< b.x)

S5 cost: 2

remove activation #2 add target #4

a
x 7→ 0

#1
c #3

b #2ψ2

(a.x=0) ∧ (a.x< c.x) ∧
(c.x< b.x)

S7 cost: 2

a
x 7→ 0

#1
c #3

b
x 7→ 2

#2ψ2

(a.x=0) ∧ (b.x=2) ∧
(a.x< c.x) ∧ (c.x< b.x)

S2 cost: 1

S4 cost: 2

add target #3
remove activation #1

free attribute in #2 force conditions on #3

add target #4

remove activation #2

. . .

. . .

Fig. 2. Search space for the running example.

specification from Ex. 2 (the complete search space is shown in [1, Fig. 5]). States
are shown as boxes, S0 being the box on top. The events of a state are shown
as boxes with activities within the state, and arrows in between them indicate
ordering conditions. Here e1 < e2 is displayed by an arrow e1 e2 , e1 ≪ e2 by
e1 e2 , and the condition e1 <

b
[c.x<b.x] e2 obtained from ψ2 by e1 e2

ψ2 . The
formulas at the bottom of states specify data conditions. The states S1–S8 are
obtained from S0 by applying repairs; we will explain below how.

Constraint violations. We next define when constraints are violated in a state.
To that end, we need some additional notation: given a Declare constraint ψ and
events e, e′ ∈ E, we denote by Ord(ψ, e, e′) the ordering conditions imposed by
ψ between an activation event e and a target event e′, defined as follows:

Definition 8. Let e, e′ be events and ψ = (φ, cA, cT , cR) a constraint. For tem-
plates φ with an activation, we define Ord(ψ, e, e′) as e < e′ (resp. e′ < e) if φ is
based on a Response (resp. Precedence) template, e≪ e′ (resp. e′ ≪ e) if φ has
a ChainResponse (resp. ChainPrecedence) template, ¬(e < e′) for NotResponse,
¬(e ≪ e′) for NotChainResponse, e <a

[cA] e′ for AlternateResponse, and
e′ <a

[cA] e for AlternatePrecedence. In the last cases, a is the activation activity

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 9

of φ. For constraints φ without activation, let Ord(ψ, e) be first(e) or last(e) if
φ is an Init or Last constraint, respectively. In all other cases, Ord(ψ, e) = ⊤.

We also need to instantiate data conditions for events. To that end, given a
Declare constraint ψ = (φ, cA, cT , cR) and an event e = (ι, a, α) such that a is
an activation activity for φ and b a target activity, we denote by [cA](e) (resp.
[cT](e)) the condition obtained from cA (resp. cT) by substituting va (resp. vb)
with vι for each v ∈ V . Similarly, for another event e′ = (δ, b, α′), [cT ∧ cR](e, e′)
denotes the condition obtained from cT ∧ cR by substituting variable va by vι,
and vb by vδ for all v ∈ V .

The first kind of violation is a missing target ; intuitively, it applies if a con-
straint ψ can be activated but might lack a target that satisfies all conditions.

Definition 9. A constraint (φ, cA,cT ,cR) has a missing target in state (E,C) if
– φ is a response or precedence constraint with activation activity a and there

is an e = (ι, a, α) ∈ E such that C ∧ [cA](e) is satisfiable, but no e′ ∈ E with
target activity such that

∧
C ∧ [cA](e) |= Ord(φ, e, e′) ∧ [cT ∧ cR](e, e′); or

– φ is of the form Existence(n, a), and e1, . . . , ek are all events with activity a
in E but

∧
C |= Σk

i=1ite([cT](ei), 1, 0) ≥ n does not hold; or
– φ is an Init, End, or Choice constraint and e1, . . . , ek are all events with

target activity in E but
∧
C |= ∨k

i=1 Ord(ψ, ei) ∧ [cT](ei) does not hold.

Here ite(b, d1, d2) abbreviates an if-then-else expression. In the first case of
Def. 9, e is called activation event.

Fig. 2 shows three cases of missing target violations for the constraints in
Ex. 2: in state S0, ψ1 is activated by the event #1 with activity a, but no target
event with activity c is present. In S1 and S3, ψ2 is violated: in S3 since no event
with activity c occurs, and in S1 because, even though an event with activity c
occurs, namely #3, its conditions do not entail c.x < b.x and #3 <a

[cA] #2.
The second kind of violation is dual in that it signals too many targets.

Definition 10. A constraint ψ = (φ, cA, cT , cR) has an excessive target in a
state S = (E,C) if
– φ is of the form Absence(n, a) and there are n events e1, . . . , en in E with

activity a such that
∧
C ∧∧n

i=1[cT](ei) is satisfiable;
– φ is a negation constraint, some e0, e1 ∈ E have activation and target activ-

ity, resp., and
∧
C ∧Ord(ψ, e0, e1)∧ [cA](e0)∧ [cT ∧ cR](e0, e1) is satisfiable.

The events e1, . . . , en in Def. 10 are called excessive target events.
For the states in Fig. 2, a constraint ⟨NotResponse(a, b), a.x ≥ 0,⊤, b.x >

a.x⟩ would have an excessive target violation in states S0 and S1, but not in S3.
On the other hand, ⟨Absence(b),⊤, b.x=3⟩ would be violated in state S7, but
not in S0 because there the conditions exclude b.x=3.

A constraint ψ is violated in a state if it has a missing or excessive target. A
state S = ⟨E,C⟩ is a goal state if no constraint in M is violated in S and C is
satisfiable. In Fig. 2, all leaves of the search tree (S2 and S4–S8) are goal states.

10

Repairing violations. Our approach subsequently expands the search space by
selecting a state where a constraint is violated and generating child states by
repairing the violation in different ways. Four kinds of repairs are distinguished:
(a) addition of an event, which will be reflected as a model move in the alignment;
(b) removal of an event that stems from the trace, corresponding to a log move
in the alignment; (c) freeing a data attribute in an event that stems from the
trace, corresponding to an edit move; and (d) enforcement of conditions.

The applicable repairs and resulting states depend on the violated constraint
ψ = (φ, cA, cT , cR) ∈ M and current state S = ⟨E,C⟩. First, if ψ has an
activation event eact ∈ E, the following repairs are applied for both missing and
excessive target violations to disable the activation:
(1) Removing an activation event. This applies if eact stems from the trace e.

The resulting state is S′ = ⟨E\{eact}, C ′⟩ where C ′ is like C with conditions
involving eact removed.

(2) Freeing a data attribute. This applies to an event eact = (ι, a, α) from the
trace e if α does not satisfy ¬[cA](eact). The repair removes an assignment
α(v) of eact for some v ∈ V . For C ′ = C \ {vι = α(v)} ∪ {¬[cA](eact)}, the
new state is S′ = ⟨E,C ′⟩.

(3) Enforcing the negated activation condition. The resulting state is S′ =
⟨E,C ′⟩ with C ′ = C ∪ {¬[cA](eact)}.

If the violation is a missing target, then a target event can be added, or an
existing event with the correct activity can be enforced to satisfy the data con-
ditions, or in some cases events can be removed that block ordering conditions.
More precisely, the following repairs apply:
(4) Adding a target event. A new state is of the form S′ = ⟨E ∪ {e}, C ′⟩ where

e = (ι, a, ∅) is a new event with fresh identifier ι. If ψ has an activation and e′
is the activation event, then C ′ = C∪{Ord(ψ, e′, e), [cA](e′), [cT ∧cR](e′, e)}.
Otherwise, C ′ = C ∪ {Ord(ψ, e), [cT](e)}.

(5) Freeing a data attribute. This applies to events e = (ι, a, α) in E that stem
from the trace e and have the target activity but do not satisfy [cT ∧cR](e′, e)
if ψ has an activation event e′ resp. [cT](e) otherwise. The repair removes
an assignment α(v) of e for some v ∈ V , which can avoid the violation. The
new state is S′ = ⟨E′, C \ {vι = α(v)}⟩ where E′ is like E with e changed to
(ι,a,α′) such that α′ is like α except being undefined for v.

(6) Enforcing conditions. This applies to an event e ∈ E with activity a, i.e.,
a potential target event. The new state is S = ⟨E,C ′⟩, where if ψ has an
activation, and e′ is the activation event that caused the missing target,
then C ′ = C ∪ {Ord(ψ, e′, e)} ∪ {[cA](e′), [cT ∧ cR](e′, e)}; otherwise, C ′ =
C ∪ {Ord(ψ, e), [cT](e)}.

(7) Removing a blocking event. This applies if an event et ∈ E with activity a
is according to the ordering conditions in C not in the right position to act
as target for ψ, but removing another event e from the trace can make room
for et. E.g., Init constraints delete the first event, and ChainResponse con-
straints remove the events directly succeeding the activation. The resulting
state is S′ = ⟨E \ {e}, C ′⟩ where C ′ is like C with conditions on e removed.

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 11

If ψ has an excessive target, we can either remove an excessive target event, or
change the data conditions such that an event with target activity no longer acts
as a target. Precisely, the following fixes apply:
(8) Removing excessive target events. This works like (1) above, but removes

excessive target events if they stem from the trace.
(9) Freeing a data attribute. This repair is similar to (2) above, but it applies

if there is an excessive target event e = (ι, a, α) in E that stems from the
input trace. However, we now enforce the negation of target and correlation
conditions. The resulting state is S′ = ⟨E′, C ′⟩ where E′ is like E but where
e is modified to (ι, a, α′) such that α′ is like α except that it is undefined for
v ∈ V . Let Ĉ = C \ {vι = α(v)}. If there is an activation event e′, we set
C ′ = Ĉ ∪ {¬[cT ∧ cR](e′, e)}; otherwise, C ′ = Ĉ ∪ {¬[cT](e)}.

(10) Enforcing negated conditions. Let e ∈ E be an excessive target event.
There are two resulting states S′ = ⟨E,C ′⟩ and S′′ = ⟨E,C ′′⟩. If there is
an activation event e′, then C ′ = C ∪ {¬[cT ∧ cR](e′, e)}; otherwise, C ′ =
C ∪ {¬[cT](e)}. Moreover, C ′′ = C ∪ {¬Ord(e′, e)}.

Note that all applicable repairs are applied in all possible ways. For instance,
when freeing a data attribute, a new state is generated for every event e and
every variable assignment in e that satisfies the conditions in (2). Also, if there
is a missing target violation and φ is a Choice constraint having two targets, a
child state is created for each possible target.

For example, in Fig. 2, S1 is obtained from S0 by adding a target event #3
(repair (4)); S3 is obtained from S0 by removing the activation event #1 (repair
(1)); S7 is obtained from S1 by freeing the data attribute x in event #2 (repair
(2)); and S2 is obtained from S1 by forcing conditions on event #3 (repair (6)).

Alignment extraction. From a goal state S = ⟨E,C⟩, we extract an alignment
as described by the pseudocode in Algorithm 1. The first step is to obtain an
SMT model µ of the conditions

∧
C. This induces a list of model events f =

⟨f0, . . . , fm−1⟩ that satisfies all ordering conditions, and where for each fj =
(ιj , aj , αj) the assignment αj is given by αj(v) = µ(vιj) for all 0 ≤ j < m.
Algorithm 1 then walks simultaneously along e and f , using i as an index for e
and j for f , and adds an edit or synchronous move if the current events ei and fj
share the same id (so fj stems from a trace event ei), a model move if the id of
the model event fj does not occur in e, and otherwise a log move. (For an event
e = (ι, a, α), we write e.id to refer to ι.) In Line 6, the number of mismatching
assignments in ei and fj determines whether the move is an edit or synchronous
move. Note that the alignment of a state is in general not unique as there can be
multiple SMT models. For instance, by applying Algorithm 1 to state S2 resp.
state S6 in Fig. 2, one obtains the alignments γ1 resp. γ2 shown in Ex. 3.

A∗-based search. Starting from the initial state that represents the input trace e,
our algorithm subsequently chooses a state with a violation and generates child
states by applying all possible repairs. By a search space for e and M, we mean
below a graph of states where the root is S0, and all states have as children
the states obtained by all possible repairs, if any. To guide the search, the A∗

algorithm maintains for each state S a cost cost(S) ∈ R, which can be shown

12

Algorithm 1 Extracting an alignment from a state
Require: State S = ⟨E,C⟩, trace e = ⟨e0, . . . , en−1⟩
Ensure: Alignment for e
1: model ← SMT model of formula

∧
C

2: ⟨f0, . . . , fm−1⟩ ← sort events in E by assignment to ordering conditions in model
3: moves ← [], i ← 0, j ← 0
4: while (i < n) ∨ (j < m) do
5: if (i < n) ∧ (j < m) ∧ (ei .id = fj .id) then
6: moves.append(editOrSynchronousMove(ei , fj))
7: i ← i + 1, j ← j + 1
8: else if (j < m) and fj .id does not occur in e then
9: moves.append(modelMove(fj))

10: j ← j + 1
11: else
12: moves.append(logMove(ei))
13: i ← i + 1

14: return moves

to match exactly the cost of alignments extracted from S. The initial state has
cost 0. When expanding a state S, the cost of a child state S′ is determined by
the applied repair: when adding or removing events, or freeing a data attribute,
we have cost(S′) = cost(S) + 1; when forcing condition satisfaction, cost(S′) =
cost(S). In Fig. 2, each state is labelled with its respective cost.

Since repairs cause costs to increase, by fair exploration of the search space
A∗ may conclude at some point that all goal states that might be further detected
have a higher cost than the goal states found so far. At this point the search
terminates, returning a goal state Sg with minimal costK. Our correctness result
below shows that the alignment extracted from Sg is optimal with cost K (cf.
the proof in the extended version [1, Sec. A.2]). Our running example illustrates
this result: in Fig. 2, the goal state with minimal cost is S2, and indeed the
alignment γ1 extracted from it (cf. Ex. 3) is optimal with cost 1.

Theorem 1 (Correctness). If S is a goal state with minimal cost K in a
search space for M and e then γ returned by Algorithm 1 on input S and e is
an optimal alignment of e wrt. M with cost K.

4 Implementation

Our approach has been implemented in the tool DADA written in Kotlin, using
the SMT solvers Z3 [11] and Yices [12] as backends. DADA requires two inputs:
a multi-perspective event log in XES format [22] and a Declare specification with
data M. The model format is backward compatible with the one of [3]. Never-
theless, the syntax for data conditions has been significantly enhanced, allowing
users to leverage the full expressiveness of the SMT-LIB2 language [2]. Also,
the cost function can be customized, providing the cost of log, model, and edit
moves as inputs. The Declare constraints language supported by our approach is,

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 13

in fact, more expressive than initially introduced in Sec. 2. Specifically, branching
in Declare constraints is enabled, as described in [8], and all Declare templates
listed in [8, Tab. 2] have been implemented. Upon execution, the tool generates
an optimal alignment, which can be output in either a human-readable format,
similar to that illustrated in Ex. 3, or a compact machine-readable format. Ad-
ditionally, the search space discovered during the computation can be exported
as a graph, akin to the one depicted in Fig. 2.
Encoding. The SMT solver reasons on control flow and data dependencies in
tandem, to identify violations and possible repairs for each constraint. We thus
need to check satisfiability of formulas that mix ordering and data conditions.
Data conditions as in Def. 2, but also much richer conditions, can be directly
expressed in SMT-LIB2. Ordering conditions on a set E are encoded as follows:
for every event e ∈ E we use the SMT variable τe of integer type that encodes the
event’s timestamp. Then an ordering constraint e1 < e2 is directly translated to
τe1 < τe2 ; first(e) is translated to

∧
e′∈E\{e} τe < τe′ and similar for last(e); and

e≪ e′ is translated to τe1 < τe2 ∧
∧

e∈E\{e1,e2}(τe > τe2 ∨ τe < τe1). A constraint
e1 <a

[c] e2 is translated to τe1 < τe2 ∧ ∧
e∈Ea

(¬[c](e) ∨ τe > τe2 ∨ τe < τe1),
where Ea is the set of all events in E with activity a, with e1 and e2 excluded.
Moreover, for efficiency, the SMT solver is used in “online” mode: when checking
the conditions of a state together with additional assertions, these are added
temporarily and removed afterwards, using the push/pop mechanism of solvers.
Optimizations. We mention the most influential optimizations. The first is se-
lecting a violation to repair: before detecting violations, events that meet the
activation condition are identified for each constraint and state, and kept during
search. As violations can be processed independently, the choice of the violation
to repair next is crucial for performance. Currently, the tool selects the violation
resulting in the fewest child states, to delay the state explosion.

The second optimization is about detecting dead-ends: in every state, all
violations are precomputed, and for every violation it is checked which repairs
are applicable. In case no repair is applicable for some violation, the state is a
dead end, and the branch can be pruned from the search space. For example,
this can happen when the only way to fix a violation is to enforce the target
event to satisfy the data constraint of x ≥ 0, but that same data attribute x was
previously enforced to be less than 0 as a fix for another constraint.

Finally, we prune unsatisfiable states. If a state S = ⟨E,C⟩ was generated
where

∧
C is unsatisfiable, conflicting conditions were added while generating

the state. Therefore, the state can be dropped from the search space.

5 Evaluation

We conduct our evaluation on the same Java Virtual Machine2 as the state-of-
the-art. The experiments are run on an Intel 5220R CPU with 8 GB of RAM.
The source code, dataset, raw results, and executable are publicly available [1].
2 OpenJDK 64-Bit VM Temurin 21.0.6+7-LTS

14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Execution time (s)

0

10000

20000

30000

40000

50000

60000

T
ra

ce
-m

o
d

el
p

ai
rs

al
ig

n
ed

Number of alignments performed in a given amount of time

0 1 2 3 4
0

25000

50000

DADA-Z3

DADA-Yices

Bergami2021-FD

Bergami2021-BA

Fig. 3. Number of trace-model pairs aligned within a given time frame by each algo-
rithm. The enlargement on the right highlights the differences for shorter time intervals.

Dataset. The evaluation utilizes a synthetic dataset that systematically varies in
complexity, originally introduced by [3]. The complexity of the process models
is influenced by the number of constraints (3, 5, 7, or 10) and constraint modifi-
cations (replacing 0, 1, 2, or 3 constraints). For each model, multiple event logs
with varying trace lengths were generated (10, 15, 20, 25, or 30 events), resulting
in 68,000 trace-model pairs. The models feature simple data conditions for both
activations and targets of all their constraints. These are variable-to-constant
conditions over categorical (with values c1, c2, or c3) and integer (ranging
from 0 to 100), such as categorical is c1 or integer > 10.

Performance comparison. We compare DADA, using either the Z3 [11] SMT
solver or the Yices [12] SMT solver, to Bergami2021 [3], using the original
SymBA* [21] planner or the Fast Downward [16] planner. Our experiments mea-
sure the execution time for each pair of model and trace of the dataset. To en-
sure all alignments are optimal, we validate that the alignment costs produced
by DADA-Z3 and DADA-Yices match those generated by Bergami2021-BA and
Bergami2021-FD.

Fig. 3 shows how, as the complexity of the trace-model pairs increases, the
state-of-the-art algorithms exhibit a sharp increase in execution times, whereas
our approach demonstrates better scalability. Notably, our approach aligns any
trace-model pair in at most 5 seconds, and DADA-Z3 is on average 2.9 times
faster than Bergami2021-FD and 5.9 times faster than Bergami2021-BA

Constraint flexibility. While the previous experiment was limited to the data
conditions supported by [3], our approach can leverage the power of SMT solvers
to define complex data dependencies such as the following correlation conditions.
In these conditions, A refers to the activation and T to the target; cat is an
abbreviation for the categorical attribute, and timestamp is the event’s time.
(C1) A.timestamp + A.integer * 1d > T.timestamp + T.integer * 1d

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 15

0 2 4 6 8 10 12 14

Execution time (s)

0

20000

40000

60000

T
ra

ce
-m

o
d

el
p

ai
rs

al
ig

n
ed Number of alignments performed in a given amount of time

DADA-Z3 DADA-Yices

Fig. 4. Performance evaluation incorporating correlation constraints.

(C2) (A.cat - "0") % 10 < (T.cat - "0") % 10
(C3) (A.cat == T.cat) ? (T.cat % 2 == 0) : (A.integer > T.integer)

We create a new dataset by adding random negations, disjunctions and con-
junctions of the previous correlation conditions to the original constraints, while
retaining the original activation and target conditions, resulting in models like:
Response[act. 1, act. 2]|...|...|¬(¬C1 or ¬(¬C3 and ¬C2))|
Chain Response[act. 3, act. 4] |...|...|¬C1 or ¬C2 or C3 |

The added correlation conditions make the alignment problem even harder
by potentially increasing (a) the number of repairs required to reach the opti-
mal alignment, (b) the number of ways in which it is possible to repair them,
and (c) the work performed by the SMT solver within each state. For these rea-
sons, the models were simplified by only considering the ceiling of half of their
constraints.

Fig. 4 shows that our approach can handle these advanced conditions, with
only a small percentage of alignments timing out after 5 minutes or running out
of memory (0.06% for DADA-Yices and 0.91% for DADA-Z3).

6 Conclusions

This paper presents a novel approach to computing data-aware optimal align-
ments between event logs and declarative process models, combining A* search
and SMT solvers. Our key contributions include a new encoding scheme for
the control flow, using an SMT solver to reason about control flow and data
conditions, and an efficient A*-based search strategy that resolves constraint
violations through repair actions. We prove its correctness and demonstrate its
efficiency in experiments, matching or surpassing state-of-the-art performance
while supporting more expressive data dependencies. Future work includes ex-
ploring optimization such as advanced pruning strategies and heuristic functions.

References

1. Anonymous: Efficient conformance checking of rich data-aware Declare specifica-
tions: Supplementary material (2025), https://tinyurl.com/DADAConformance

https://tinyurl.com/DADAConformance

16

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.7. Tech.
rep., University of Iowa (2025)

3. Bergami, G., Maggi, F.M., Marrella, A., Montali, M.: Aligning data-aware declar-
ative process models and event logs. In: Proc. 19th BPM. LNCS, vol. 12875, pp.
235–251 (2021)

4. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352
(2014)

5. Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment:
Opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)

6. Burattin, A., Maggi, F.M., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Syst. Appl. 65, 194–211 (2016)

7. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

8. Casas-Ramos, J., Lama, M., Mucientes, M.: DeclareAligner: A leap towards ef-
ficient optimal alignments for declarative process model conformance checking
(2025), arXiv 2503.10479

9. Christfort, A.K.F., Slaats, T.: Efficient optimal alignment between dynamic condi-
tion response graphs and traces. In: Proc. 21st BPM. LNCS, vol. 14159, pp. 3–19
(2023)

10. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi, F.: On the disruptive effective-
ness of automated planning for LTLf-based trace alignment. In: Proc. 31st AAAI.
pp. 3555–3561 (2017)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proc. 14th TACAS.
LNCS, vol. 4963, pp. 337–340 (2008)

12. Dutertre, B.: Yices 2.2. In: Proc. 14th CAV. pp. 737–744 (2014)
13. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: Cocomot: Conformance

checking of multi-perspective processes via SMT. In: Proc. of BPM 2021. LNCS,
vol. 12875, pp. 217–234. Springer (2021)

14. Felli, P., Montali, M., Patrizi, F., Winkler, S.: Monitoring arithmetic temporal
properties on finite traces. In: Proceedings of the 37th AAAI Conference on Arti-
ficial Intelligence. pp. 6346–6354. AAAI Press (2023)

15. Gianola, A.: Verification of Data-Aware Processes via Satisfiability Modulo Theo-
ries, LNBIP, vol. 470. Springer (2023)

16. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

17. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework
to check the conformance of declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015)

18. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

19. Riva, F., Benvenuti, D., Maggi, F.M., Marrella, A., Montali, M.: An SQL-based
declarative process mining framework for analyzing process data stored in rela-
tional databases. In: Proc. BPM Forum. LNBIP, vol. 490, pp. 214–231 (2023)

20. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: Proc. 28th CAiSE. pp.
290–305 (2016)

21. Torralba, A., Alcázar, V., Borrajo, D., Kissmann, P., Edelkamp, S.: SymBA*: A
symbolic bidirectional A* planner. In: Planning Competition. pp. 105–108 (2014)

22. XES Working Group: IEEE standard for extensible event stream (XES) for achiev-
ing interoperability in event logs and event streams. IEEE Std 1849-2023 (2023)

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 17

A Appendix

A.1 Semantics of Declare with Data

The following definition clarifies when a trace satisfies Declare constraints with
data. For an assignment α with domain V , we write αa for some a ∈ A for the
same assignment on labeled variables, i.e., the assignment with domain {va | v ∈
V } that sets αa(va) = α(v). Moreover, we write α |= c to express that α satisfies
a condition c. For the union of two assignments α, β with disjoint domain we
write α ∪ β.

Definition 11. A constraint ψ = ⟨φ, cA, cT , cR⟩ is satisfied by a trace e =
⟨e0, . . . , em−1⟩ if
– φ = Existence(n, a), there are n distinct events ei1 , . . . , ein in e such that

for all 1 ≤ j ≤ n, for eij = ⟨ιj , a, αj⟩ it holds that αa
j |= cT ;

– φ = Absence(n, a), and e does not satisfy ⟨Existence(n, a), cA, cT , cR⟩;
– φ = Init(a), e0 = ⟨ι, a, α⟩, and αa |= cT ;
– φ = End(a), em−1 = ⟨ι, a, α⟩, and αa |= cT ;
– φ = Choice(a, b), and there is some ei = ⟨ι, d, α⟩, 1 ≤ i ≤ n, such that d = a

or d = b and αa |= cT ;
– φ = RespondedExistence(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i <
m, such that αa |= cA, or there is some ej = ⟨ι′, b, β⟩, with 0 ≤ j < m and
i ̸= j, such that αa ∪ βb |= cT ∧ cC ;

– φ = Response(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i < m, such
that αa |= cA, or there is some ej = ⟨ι′, b, β⟩, with i < j < m, such that
αa ∪ βb |= cT ∧ cC ;

– φ = AlternateResponse(a, b), and either there is no ei = ⟨ι, a, α⟩, 0 ≤ i < m,
such that αa |= cA, or there is some ej = ⟨ι′, b, β⟩, with i < j < m, such that
αa ∪ βb |= cT ∧ cC , and for all ek with i < k < j of the form ek = ⟨ι′, d, αk⟩
either d ̸= a or αa

d ̸|= cA;
– φ = ChainResponse(a, b), and either there is no ei = ⟨ι, a, α⟩, 1 ≤ i ≤ n,

such that αa |= cA, or i < m− 1 and ei+1 = ⟨ι′, b, β⟩ and αa ∪βb |= cT ∧ cC ;
– φ = Precedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 0 ≤ i < m, such

that αb |= cA, or there is some ej = ⟨ι′, a, β⟩, with 0 < j < i, such that
αb ∪ βa |= cT ∧ cC ;

– φ = AlternatePrecedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 0 ≤ i <
m, such that αb |= cA, or there is some ej = ⟨ι′, a, β⟩, with 0 < j < i,
such that αb ∪ βa |= cT ∧ cC , and for all ek with j < k < i of the form
ek = ⟨ι′, d, αk⟩ either d ̸= b or αb

d ̸|= cA;
– φ = ChainPrecedence(a, b), and either there is no ei = ⟨ι, b, α⟩, 1 ≤ i ≤ n,

such that αb |= cA, or i > 0 and ei−1 = ⟨ι′, a, β⟩ and αb ∪ βa |= cT ∧ cC ;
– φ = NotResponse(a, b), and e does not satisfy ⟨Response(n, a), cA, cT , cR⟩;
– φ = NotRespondedExistence(a, b), and e does not satisfy the constraint

⟨RespondedExistence(n, a), cA, cT , cR⟩; or
– φ = NotChainResponse(a, b), and trace e does not satisfy the constraint

⟨ChainResponse(n, a), cA, cT , cR⟩.

18

A.2 Proofs

Below, we denote by Γ (S) the set of alignments that are possible results of
Algorithm 1 on input S. The following is straightforward to show by a case
distinction on φ.

Lemma 1. Let ψ = (φ, cA, cT , CR) be a constraint. If a state S does not violate
ψ iff for all γ ∈ Γ (S), it holds that γ|M satisfies ψ.

We next show that if Algorithm 1 returns γ on input S and e then γ is indeed
an alignment for e, though in general only for a subset of M, and the cost of γ
coincides with cost(S).

Lemma 2 (Soundness). For each γ ∈ Γ (S), γ is an alignment of e such that
κ(γ) = cost(S).

Proof. First of all, we observe that if S = ⟨E,C⟩ and γ ∈ Γ (S) then γ|L = e
because Algorithm 1 adds for every ei in e a log or synchronous/edit move.

We show the claim about cost by induction on the depth n at which S
occurs in the search tree. The statement holds for the initial state S0, where an
alignment γ ∈ Γ (S) consists of only synchronous moves, so κ(γ) = 0 = cost(S0).

Let S′ = ⟨E′, C ′⟩ be at depth n+1 in the search tree. The induction hypoth-
esis is that the claim holds for all states at level n. We perform a case distinction
on the repair applied at the parent S = ⟨E,C⟩ of S′ to create S.
1. If an event was added, then this event has a fresh id. Each alignment γ′ ∈
Γ (S′) stems from some model µ for C ′. By construction of the repair (the
constraints remain the same), µ also satisfies C, giving rise to an alignment
γ ∈ Γ (S). By the induction hypothesis, γ is an alignment of e with cost
cost(S). Alignment γ′ must be like γ except for an additional model move
(as the added id is fresh, it cannot match an event in the trace), so that
κ(γ′) = κ(γ) + 1. Since we have cost(S′) = cost(S) + 1 and κ(γ) = cost(S)
by the induction hypothesis, the claim holds.

2. If an event was removed, then this event stems from the trace, and was not
modified beforehand. Each alignment γ′ ∈ Γ (S′) stems from some assign-
ment µ′ for C ′. Ordering conditions and data conditions are independent.
Thus there is an assignment µ that coincides with µ′ on ordering constraints
and assigns arbitrary data values compatible with C. Even though data val-
ues differ, for all moves except for the one concerning the removed event,
their costs coincide, as required data values are enforced by dedicated condi-
tions. The corresponding alignment γ ∈ Γ (S) has a synchronous move where
γ′ has a log move, so cost(γ′) = cost(γ) + 1. Since cost(S′) = cost(S) + 1
and cost(γ) = cost(S) by induction hypothesis, the claim holds.

3. Suppose a data attribute v in an event e = (ι, a, α) was freed. Each alignment
γ′ ∈ Γ (S′) stems from some assignment µ′ for C ′. Ordering conditions and
data conditions are independent. Thus there is an assignment µ for C that
coincides with µ′ on ordering constraints and assigns data values compatible
with C, in particular µ(vι) = α(v). Even though data values differ, for all

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 19

moves except for the one concerning e, their costs coincide, as required data
values are enforced by dedicated conditions.

4. Suppose conditions were enforced. Then any model of C is also a model of
C ′ as C ′ ⊆ C, and each alignment γ ∈ Γ (S) that stems from some model
µ for C is also an alignment in Γ (S). Since cost(S) = cost(S′), the claim
follows from the induction hypothesis. ⊓⊔

Let two alignments for e and M be equivalent if they have the same sequences
of log, model, synchronous, and edit moves, and where the latter edit the same
variables. However, variable values that do not match a variable in a trace move
are irrelevant, as are also event identifiers.

Lemma 3 (Completeness). Let γ be an optimal alignment for e and M.
Then there is a goal state Sg in the search space such that Γ (Sg) contains an
alignment equivalent to γ.

Proof. Let γ be an optimal alignment for e = ⟨e1, . . . , en⟩ and M. Let γ|M =
f = ⟨f0, . . . , fm⟩.

We show the claim by induction along with the fact that for each state
S = ⟨E,C⟩, there is a correspondence relation RS between events in ⟨f0, . . . , fm⟩
and events in E that satisfies the following invariants:
(i) For every pair (e, f) ∈ RS , the two events have the same activity.
(ii) For all events e ∈ E \ {e1, . . . , en}, there is some fj in f such that (e, fj) ∈

RS . That is, all added events have a correspondent in f . Moroever, for all
edit or synchronous moves (e, fj) in γ, fj has a match in RS .

(iii) Let µ be the (partial) assignment on vars(C) that sets the timestamps
according to f , i.e., µ(te) = time(fj), and assigns payloads of e like payloads
in fj , for all (e, fj) ∈ RS . Let E|RS

be the subset of E given by E|RS
= {e |

∃f(e, f) ∈ RS}. Then µ satisfies C \ C0, where C0 are the conditions from
the initial state.

(iv) Only attributes of events are freed that have via RS a correspondent in f .
If S = S0, then E = {e1, . . . , en}. Let RS0

consist of all pairs (ei, fj) such
that (ei, fj) is a synchronous or edit move in γ. The relation RS0

satisfies (i)
because in edit and synchronous moves the activity is shared. Item (ii) and (iii)
are vacuoisly satisfied as no events were added.

For a state S = ⟨E,C⟩, we show the lemma statement and the claims about
RS , by induction on the measure (m − |RS |, traceEvents(E), bnd(E), viol(S)),
where |RS | is the number of pairs in RS , traceEvents(E) is the number of events
in E that stem from the trace, bnd(E) the number of bound variables in events
in E stemming from the trace, and viol(S) the number of violations in S.

In the base case, m = |RS | and viol(S) = 0 for a current state S = ⟨E,C⟩
(the other components turn out to be irrelevant). Since there are no violations,
S is a goal state. As m = |RS |, every event in f has a matching event in E. By
assumption (iii) on RS , assignment µ satisfies all constraints in C. Hence µ can
be used in Algorithm 1 to obtain an alignment of e and M that is equivalent to
γ.

20

For the step case, we consider a current state S = ⟨E,C⟩ in which m > |RS |
or viol(S) > 0. We first observe that that if viol(S) = 0 then m = |RS |: Suppose
to the contrary that there is an event fj in f with no e such that (e, fj) ∈ RS . The
move (e′, fj) in γ cannot be an edit or synchronous move because then e′ would
stem from the trace and still be in E, hence there would be some (e, fj) ∈ RS .
So it must be a model move. Since µ satisfies C restricted to E|RS

, and S has no
violation, with Lem. 1 we conclude that also ⟨f1, . . . , fj−1, fj+1, . . . , fm⟩ must
satisfy M, so γ cannot be optimal, a contradiction.

Hence we can assume that S has a violation. Suppose S gets repaired for a
constraint ψ = ⟨φ, cA, cT , cR⟩ ∈ M and consider first a missing target violation.

1. Suppose first that ψ does not have an activation. By a case distinction, we
decide a next state S′. For simplicity, we consider the case of a single target,
but the case for Existence is similar. Let fj be the target of ψ in f .
(a) If there exists some e = (ι, a, α) ∈ E such that (e, fj) ∈ R then we must

have C ̸|= Ord(ψ, e)∧ [cT](e) (⋆), otherwise there would be no violation.
Let fj = (ι′, a, α′).
– If there is some v ∈ D(α) such that α(v) ̸= α′(v) then let S′ be the

child state obtained from a repair (5) where attribute v was freed.
– Otherwise, if

∧
C ∧ Ord(ψ, e) ∧ [cT](e) is satisfiable, let S′ be the

result of a condition enforcement repair (6). The repair is applicable
because of (⋆) and as C ∧Ord(ψ, e) ∧ [cT](e) is satisfiable, and thus
also the resulting state is satisfiable.

– Otherwise,
∧∧Ord(ψ, e) ∧ [cT](e) is not satisfiable. Since µ satis-

fies C \ C0 and µ satisfies Ord(ψ, e) ∧ [cT](e), there must be some
event e′ ∈ E from the trace that causes unsatisfiability. In fact, as
assignments in e and fj have no mismatches,

∧
C ∧Ord(ψ, e) must

be unsatisfiable. Precisely, Ord(ψ, e) must be first(e) (resp. last(e)),
but C contains e′ < e (resp. e′ > e) for some trace event e′. Then
e′ cannot have a match in R, and we apply repair (7) to remove e′,
obtaining a state S′.

(b) Now assume there is no match for fj in R. Then fj cannot be in a
synchronous or edit move in γ, because by invariant (ii) it would have
a match with an element from the trace. So fj is in a model move, let
S′ be the state obtained from a repair (4) where a target event e was
added. Set RS′ = RS ∪{(e, fj)}, which satisfies the invariants (i)− (iii).

2. Now suppose ψ has an activation, let eact ∈ E be the activation event of the
violation.
(a) Suppose there is some fj such that (eact , fj) ∈ R. Suppose first that for

fj = ⟨ι′, a, α′⟩, α′ does not satisfy cA.
– If there is some v ∈ D(α) such that α(v) ̸= α′(v) then let S′ be the

child state obtained from a repair (2) where attribute v was freed.
– Otherwise, let S′ be the result of a condition enforcement repair (3).

Second, suppose α′ satisfies cA, so it must have a target fk in f , k ̸= j.

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 21

i. If there exists some e = (ν, b, β) ∈ E such that (e, fk) ∈ R then we
must have C ̸|= Ord(ψ, eact , etgt)∧ [cT ∧ cR](eact , etgt) (⋆), otherwise
there would be no violation. Let fk = (ν′, b, β′).
– If there is some v ∈ dom(β) such that β(v) ̸= β′(v) then let S′

be the child state obtained from a repair (5) where attribute v
was freed.

– Otherwise, if
∧
C ∧ Ord(ψ, eact , etgt) ∧ [cT ∧ cR](eact , etgt) is

satisfiable, let S′ be the result of a condition enforcement re-
pair (6). The repair is applicable because of (⋆) and as

∧
C ∧

Ord(ψ, eact , etgt)∧ [cT ∧cR](eact , etgt) is satisfiable, and thus also
the resulting state is satisfiable.

– Otherwise, if
∧
C∧Ord(ψ, eact , etgt)∧[cT∧cR](eact , etgt) is unsat-

isfiable, this must be because of some trace events in E that have
no correspondent in run, since

∧
(C \ C0) ∧ Ord(ψ, eact , etgt) ∧

[cT ∧ cR](eact , etgt) is satisfied by µ. In fact, as assignments in e
and fj have no mismatches,

∧
C ∧Ord(ψ, eact , etgt) must be un-

satisfiable. Precisely, Ord(ψ, eact , etgt) must be eact ≪ etgt but
C contains eact < e′ and e′ < etgt (or similar for precedence) for
some trace event e′. Then e′ cannot not have a match in R, and
apply repair (7) to remove e′, obtaining a state S′.

ii. Now assume there is no match for fk in R. Then fk cannot be in a
synchronous or edit move in γ, because then it would have a match
with an element from the trace. So fk is in a model move, let S′

be the state obtained from a repair (4) where a target event e was
added. Set RS′ = RS ∪ {(etgt , fk)}, which satisfies the invariants.

(b) Suppose there is no (eact , fj) ∈ R. By invariant (ii), eact stems from the
trace. We then apply the repair (1) to remove the activation event eact ,
obtaining a state S′. Note that the activation event cannot have been
modified, otherwise there would be a match in R.

Second, consider an excessive target violation. Let etgt be the excessive target
event that caused the violation.

3. Suppose first that ψ does not have an activation. By a case distinction, we
decide a next state S′. For simplicity, we consider the case of a single target,
but the case for Absence is similar.
– Suppose there is some fj such that (etgt , fj) ∈ R. Suppose first that for
fj = ⟨ι′, a, α′⟩, α′ does not satisfy cT .
• If there is some v ∈ D(α) such that α(v) ̸= α′(v) then let S′ be the

child state obtained from a repair (9) where attribute v was freed.
• Otherwise, let S′ be the result of a condition enforcement repair (10).

– Suppose there is no fj such that (etgt , fj) ∈ R. Then etgt must stem from
the trace. We then apply repair (8) to remove an extra target.

4. Now suppose ψ has an activation, let eact ∈ E be the activation event of the
violation.
(a) Suppose there is some fj such that (eact , fj) ∈ R.

22

i. Suppose there is some fk in f such that (etgt , fk) ∈ R. Let etgt =
(ν, b, β) and fk = (ν′, b, β′). Since f satisfies ψ, the assignment µ does
not satisfy Ord(ψ, eact , etgt) ∧ [cT ∧ cR](eact , etgt).
– If there is some v ∈ dom(β) such that β(v) ̸= β′(v) then let S′

be the child state obtained from a repair (9) where attribute v
was freed.

– Otherwise, we apply a condition enforcement repair (10). If
µ does not satisfy Ord(ψ, eact , etgt) then we take the state
S′ = ⟨E,C ′⟩ where C ′ = C ∪ {¬Ord(ψ, eact , etgt)}. Otherwise,
µ does not satisfy [cT ∧ cR](eact , etgt), and we take the state
S′′ = ⟨E,C ′′⟩ where C ′ = C ∪ {¬[cT ∧ cR](eact , etgt)}.

ii. Suppose there is no fk in f such that (etgt , fk) ∈ R. Then etgt must
stem from the trace. We apply repair (8) to remove an activation
event.

(b) Suppose there is no fj such that (eact , fj) ∈ R. Then eact must stem
from the trace. We then apply repair (1) to remove an activation event.

The measure decreases for repairs where an event was added because we
always add an entry to R; it decreases when removing an event because the
number of trace events decreases; when freeing an attribute, the number of bound
variables decreases, and when enforcing constraints, the number of violations
decreases. Hence, we can conclude by the induction hypothesis applied to the
child state S′. ⊓⊔

Theorem 1 (Correctness). If S is a goal state with minimal cost K in a
search space for M and e then γ returned by Algorithm 1 on input S and e is
an optimal alignment of e wrt. M with cost K.

Proof. By Lem. 2, every alignment extracted from a goal state is an alignment
for e and M. Moreover, by Lem. 3, for an optimal alignment γ of e and M there
is some goal state Sg that allows to extract an alignment equivalent to γ, and
by Lem. 2 it satisfies cost(S) = κ(γ). The claim then follows from correctness of
A∗, i.e., the fact that a state with minimal cost is returned. ⊓⊔

Efficient Conformance Checking of Rich Data-Aware Declare Specifications 23

a
x
7→

0#
1

b
x
7→

2#
2

(a
.x

=
0)

∧
(b
.x

=
2)

ψ
1
:

ac
ti
va
ti
on

#
1
m
is
se
s
ta
rg
et

S
0

co
st
:
0

a
x
7→

0#
1

c
#
3

b
x
7→

2#
2

(a
.x

=
0)

∧
(b
.x

=
2)

∧
(a
.x
<
c.
x
)

ψ
2
:

ac
ti
va
ti
on

#
2
m
is
se
s
ta
rg
et

S
1

co
st
:
1

b
x
7→

2#
2

(b
.x

=
2)

ψ
2
:

ac
ti
va
ti
on

#
2
m
is
se
s
ta
rg
et

S
3

co
st
:
1

a
x
7→

0#
1

c
#
3

(a
.x

=
0)

∧
(a
.x
<
c.
x
)

S
6

co
st
:
2

a
x
7→

0#
1

c
#
3

c
#
4

b
x
7→

2#
2

ψ
2

(a
.x

=
0)

∧
(b
.x

=
2)

∧
(a
.x
<
c#

3
.x
)
∧
(c
#
4
.x
<
b
.x
)

S
8

co
st
:
2

c
#
1

b
x
7→

2#
2

ψ
2

(b
.x

=
2)

∧
(c
.x
<
b
.x
)

S
5

co
st
:
2

b
#
2

(b
.x

=
2)

∧
(b
.x
<

0)

S
1
0

co
st
:
2

re
m
ov
e
ac
ti
va
ti
on

#
2

ad
d
ta
rg
et

#
4

ad
d
ta
rg
et

#
4

fr
ee

at
tr
ib
u
te

in
#
2

a
x
7→

0#
1

c
#
3

b
#
2

ψ
2

(a
.x

=
0)

∧
(a
.x
<
c.
x
)
∧

(c
.x
<
b
.x
)

S
7

co
st
:
2

a
x
7→

0#
1

c
#
3

b
#
2

ψ
2

(a
.x

=
0)

∧
(a
.x
<
c.
x
)
∧

(c
.x
<
b
.x
)
∧
(b
.x
<

0)

S
9

co
st
:
2

a
x
7→

0#
1

c
#
3

b
x
7→

2#
2

ψ
2

(a
.x

=
0)

∧
(b
.x

=
2)

∧
(a
.x
<
c.
x
)
∧
(c
.x
<
b
.x
)

S
2

co
st
:
1

S
4

co
st
:
2

ad
d
ta
rg
et

#
3

re
m
ov
e
ac
ti
va
ti
on

#
1

fr
ee

at
tr
ib
u
te

in
#
2

fr
ee

at
tr
ib
u
te

in
#
2

fo
rc
e
co
n
d
it
io
n
s
on

#
3

re
m
ov
e
ac
ti
va
ti
on

#
2

Fig. 5. Complete search space for running example

	Efficient Conformance Checking of Rich Data-Aware Declare Specifications (Extended)

